353 research outputs found

    Warming Up a Cold Front-End with Ignite

    Get PDF
    Serverless computing is a popular software deployment model for the cloud, in which applications are designed as a collection of stateless tasks. Developers are charged for the CPU time and memory footprint during the execution of each  serverless function, which incentivizes them to reduce both runtime and memory usage. As a result, functions tend to be short (often on the order of a few milliseconds) and compact (128–256 MB). Cloud providers can pack thousands of such functions on a server, resulting in frequent context switches and a tremendous degree of interleaving. As a result, when a given memory-resident function is re-invoked, it commonly finds its on-chip microarchitectural state completelycold due to thrashing by other functions — a phenomenon termed lukewarm invocation. Our analysis shows that the cold microarchitectural state due to lukewarm invocations is highly detrimental to performance, which corroborates prior work. The main source of performance degradation is the front-end, composed of instruction delivery, branch identification via the BTB and the conditional branch prediction. State-of-the-art front-end prefetchers show only limited effectiveness on lukewarm invocations, falling considerably short of an ideal front-end. We demonstrate that the reason for this is the cold microarchitectural state of the branch identification and prediction units. In response, we introduce Ignite, a comprehensive restoration mechanism for front-end microarchitectural state targeting instructions, BTB and branch predictor via unified metadata. Ignite records an invocation’s control flow graph in compressed format and uses that to restore the front-end structures the next time the function is invoked. Ignite outperforms state-of-the-art front-end prefetchers, improving performance by an average of 43% by significantly reducing instruction, BTB and branch predictor MPKI

    Downtown Providence Farmers Market Design

    Get PDF
    This market essentially combines a marketplace with an existing or new industrial building. The hybrid created results in space that has daily retail sales and hours, as well as other goods available at other times. The industrial aspect typically acts as the anchor, as the market’s activities help attract a different group of consumers at other business times. An example of this would be a seafood supply warehouse that also provides dining and entertainment as a nightlife destination

    Cognitive and psychomotor responses to high-altitude exposure in sea level and high-altitude residents of Ecuador

    Get PDF
    Background High-altitude inhabitants have cardiovascular and respiratory adaptations that are advantageous for high-altitude living, but they may have impaired cognitive function. This study evaluated the influence of altitude of residence on cognitive and psychomotor function upon acute exposure to very high altitude. Findings Ecuadorians (31 residing at 0–1,500 m [LOW], 78 from 1,501–3,000 m [MOD], and 23 living \u3e3,000 m [HIGH]) were tested upon their arrival to a hut at 4,860 m on Mount Chimborazo. Cognitive/psychomotor measurements included a go-no-go test (responding to a non-visual stimulus), a verbal fluency test (verbalizing a series of words specific to a particular category), and a hand movement test (rapidly repeating a series of hand positions). Mean differences between the three altitude groups on these cognitive/psychomotor tests were evaluated with one-way ANOVA. There were no significant differences (p = 0.168) between LOW, MOD, and HIGH for the verbal fluency test. However, the go-no-go test was significantly lower (p \u3c 0.001) in the HIGH group (8.8 ± 1.40 correct responses) than the LOW (9.8 ± 0.61) or MOD (9.8 ± 0.55) groups, and both MOD (97.9 ± 31.2) and HIGH (83.5 ± 26.7) groups completed fewer correct hand movements than the LOW (136.6 ± 37.9) subjects (p \u3c 0.001). Conclusions Based on this field study, high-altitude residents appear to have some impaired cognitive function suggesting the possibility of maladaptation to long-term exposure to hypobaric hypoxia

    Hardware-Supported Cryptographic Protection of Random Access Memory

    Get PDF
    Confidential Computing is the protection of data in use from access or modification by any unauthorized agent, including privileged software. For example, in Intel SGX (Client and Scalable versions) and TDX, AMD SEV, Arm CCA, and IBM Ultravisor this protection is implemented via access control policies. Some of these architectures also include memory protection schemes relying on cryptography, to protect against physical attacks. We review and classify such schemes, from academia and industry, according to protection levels corresponding of adversaries with varying capabilities, budget, and strategy. The building blocks of all memory protection schemes are encryption and integrity primitives and modes of operation, as well as anti-replay structures. We review these building blocks, consider their possible combinations, and evaluate the performance impact of the resulting schemes. We present a framework for performance evaluation in a simulated system. To understand the best and worst case overhead, systems with varying load levels are considered. We propose new solutions to further reduce the performance and memory overheads of such technologies. Advanced counter compression techniques make it viable to store counters used for replay protection in a physically protected memory. By additionally repurposing some ECC bits to store integrity tags, we can provide the highest levels of confidentiality, integrity, and replay protection at a hitherto unattained performance penalty, namely 3.32%, even under extreme load and at costs that make them reasonable in data centers. Combinations of technologies that are suitable for client devices are also discussed

    RANTES Secretion by Gene-Modified Tumor Cells Results in Loss of Tumorigenicity In Vivo: Role of Immune Cell Subpopulations

    Full text link
    Overview summary Members of the chemokine superfamily mediate potent and selective chemoattraction of a variety of immune cell subsets, which is concentration dependent. This important and novel biologic activity raises the possibility of using chemokines as adjuvants in cancer vaccine strategies. We describe here the in vitro chemotactic capacity of RANTES for murine CD8+ tumor-infiltrating lymphocytes (TIL). Moreover, murine fibrosarcoma cells transfected with the cDNA encoding RANTES and secreting high levels of this chemokine become nontumorigenic in immunocompetent mice. The antitumor effect of RANTES is dependent on inherent tumor immunogenicity and is mediated through the participation of host-derived T cells and macrophages. Thus, the general chemoattractant properties exhibited by RANTES in vitro appear to be relevant in an in vivo model. These data warrant further investigation of other distinct members of the chemokine superfamily for their potential use, either alone or in combination, in gene therapy approaches that employ tumor cells as immunogens.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63285/1/hum.1996.7.13-1545.pd

    Numerical modeling of the transient temperature rise during ball-on-disk scuffing tests

    Get PDF
    Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014.Scuffing is a form of surface damage and wear that occurs in inadequately-lubricated tribosystems that causes catastrophic damage on tribological surfaces and usually results in the need for part replacement. As a major cause of failure in automotive and other mechanical components, scuffing has been the focus of much research to elucidate its fundamental underpinnings. One of the characteristics of scuffing is an increase in the coefficient of friction and in the surface temperature of the contacting parts. In this paper, we report on ongoing numerical work focused on modeling the transient temperature rise that occurs in a workpiece during a ball-on-disk tribometer test. In such a test, a load is applied to a stationary ball which is placed in contact with a rotating disk. Inputs to the numerical thermal model come from experimental and numerical contact mechanics tests. Results for both the bulk disk temperature, as well as the surface flash temperature under different loading conditions are presented and discussed.dc201

    CCR6, a CC Chemokine Receptor that Interacts with Macrophage Inflammatory Protein 3α and Is Highly Expressed in Human Dendritic Cells

    Get PDF
    Dendritic cells initiate immune responses by ferrying antigen from the tissues to the lymphoid organs for presentation to lymphocytes. Little is known about the molecular mechanisms underlying this migratory behavior. We have identified a chemokine receptor which appears to be selectively expressed in human dendritic cells derived from CD34+ cord blood precursors, but not in dendritic cells derived from peripheral blood monocytes. When stably expressed as a recombinant protein in a variety of host cell backgrounds, the receptor shows a strong interaction with only one chemokine among 25 tested: the recently reported CC chemokine macrophage inflammatory protein 3α. Thus, we have designated this receptor as the CC chemokine receptor 6. The cloning and characterization of a dendritic cell CC chemokine receptor suggests a role for chemokines in the control of the migration of dendritic cells and the regulation of dendritic cell function in immunity and infection
    • …
    corecore